Functional Analysis HW 3

1. Let X and Y be the closed subspaces of a normed space Z. Show that if $\operatorname{dim} X<\infty$, then the sum $X+Y:=\{x+y: x \in X, y \in Y\}$ is a closed subspace of X.
Hint: notice that the quotient map $\pi: Z \rightarrow Z / Y$ is bounded and hence, $\pi^{-1}(F)$ is closed whenever F is a closed subset of Z / Y.
2. Let $X=\left\{x \in \ell^{1}: x(2 k) \equiv 0, \forall k=1,2 \ldots\right\}$ and $Y=\left\{y \in \ell^{1}: \frac{1}{k} y(2 k-1)=y(2 k), \forall k=1,2, \ldots\right\}$. For each $k=1,2$.., let

$$
e_{k}(i)= \begin{cases}1 & \text { if } i=k \\ 0 & \text { otherwise }\end{cases}
$$

(i) Show that X and Y are closed subspaces of ℓ^{1}
(ii) e_{k} belongs the sum $X+Y$ for all $k=1,2 \ldots$
(iii) $X+Y$ is not closed in ℓ^{1}. Hint: $\overline{X+Y}=\ell^{1}$ (Explain!). Now if we let

$$
z(i)= \begin{cases}1 / n & \text { if } i=2 n \\ 0 & \text { otherwise }\end{cases}
$$

show that $z \notin X+Y$.
3. For each $x \in \ell^{\infty}$, the multiplicative linear operator $M_{x}: \ell^{2} \rightarrow \ell^{2}$ defined by

$$
M_{x}(\xi)(k):=x(k) \xi(k), \quad k=1,2 \ldots
$$

for $\xi \in \ell^{2}$. Show that M_{x} is bounded and $\left\|M_{x}\right\|=\|x\|_{\infty}$.

